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ABSTRACT 

Jet shapes at 4 = 1.8 TeV have been measured by CDF at the Fermilab Tevatron 
Collider. The jet shape is mainly formed by parton emission before hadronieation. 
The jet shapes may also be used to differ between quark and gluon jets. Two 
approaches are tried. Jet shape variables are input to a feed forward neural network 
trained on QCD Monte Carlos. We observe B variation of the quark content of jets 
as B function of jet transverse energy. The second approach consists of constructing 
a likelihood function, based on Monte Carlo predictions, with the Mellin moments 
of the momentum of charged tracks in jets. Differences are found between gluon-like 
jets in Z-jet events and quark-like jets in photon-jet events. 

1. Jet Shape 

In this paper the jet shape is defined as the normalized transverse momentum 
flow of tracks inside a jet of cone R where R = dm, r) is pseudorapidity and 
4 is the azimuthal angle. Jets have transverse energy Et. Transverse is calculated 
w.r.t. the beam axis. In previous papers’ we have shown that the measured jet 
shape agrees with NLO QCD calculations and with the Herwig Monte Carlo. We 
pursue this analysis farther by showing that both Pythia and Isajet Monte Carlos 
predict quite accurately the shape (Fig. la). We try to separate the QCD shower 
contribution to the shape from the fragmentation contribution in the Monte Carlos. 
The shape obtained from showered partons in Herwig agrees to the data, while 
the shape obtained from Feynman-Field fragmentation without gluon radiation in 
Isajet diverges from the data (Fig. lb). Th us, we conclude that parton emission 
is the dominant process in forming the jet shape. One may try to use jet shape 
variables to classify quark and gluon jets, based on Monte Carlo predictions. 

2. Neural Network Quark-Gluon Separation 

A feed-forward Neural Network (NN) is used to discriminate between quark 
and gluon jetsl. Of the 8 variables chosen, 3 sample the jet shape described above. 
The others are the charge multiplicity, the second moments of the 7 and 4 distribu- 
tions of the jet, and the Pt of the leading track and its distance 7 from the jet axis 
in q-4 space. The NN was trained on Pythia quark and gluon jets. 

The NN outputs one variable, pgval, which is larger for quark jets then for 
gluon jets. In Fig. 2 we show the evolution of <qgvah with measured jet Et. It 
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Figure 2: Neural Network output for diikent jet energim The average qgoai increma with energ); 
suggesting an increasing number of quark jets in the data. 
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Figure 3: The fraction of glum jets in 2-jet and T-jet events. 



& 0.4s F 

.f 0.4 

4 

E 0.35 b: 
0.3 k.i, 

0.73 
0.2 

0.15 

0.1 

0.05 

0 

i i., 
L : ...... bajet 
i : 

r 
r 

:t_ 

f 
; ‘... 
E * . 

- Herwig (b) 

--- Hcmig part. 
~..... Isojet frog. 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 

Figure 1: Jet Shape for data and Monte Carlos. a) The MC’s are shown after detector simulation. 
b) The MC’s are shown without detector simulation. 

is noticeable that the fraction of quark jets grows with jet Et, while <qgval> is 
independent of jet Et for a single species. 

3. Dynamic Likelihood Quark-Gluon Separation 

Another approach is to use Mellin transforms of the momentum of charged 
particles inside a jet3 A likelihood function is constructed with these transforms. 
We rely on distributions calculated from Herwig and Pythia quark and gluon jets 
to derive probabilities for a jet to be a quark or a gluon jet. 

In Fig 3. we display the gluon jet fractions in 2 jet events and in y-jet events, 
which are expected to be quark enriched. As expected, 2-jet events on average 
contain more gluon-like jets than y events. 
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